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A New Edge Element Analysis of
Dispersive Waveguiding Structures

Jilin Tan and Guangwen

Abstract-A new functional is rigorously selected for the edge
element method to solve the 2 – D ~ guided wave problems. The
variational formulation is derived from the vector wave equation
without any assumption or simplifications, and therefore the
formulation is the full-wave analysis. Moderate to heavy ohmic
loss and dielectric loss are taken into account in a natural and
consistent manner. As a result, finite cross-section of arti]trary
shape and finite conductivity can be handled without imposing
the impedance boundary condition (IBC). The IBC may no longer
be held for high-speed microelectronics applications, where the
cross-section dimension may have been in the same order of
the skin depths of some frequency components. The propagation
modes are obtained by solving the large scale generalized eigen-
value and eigenvector equations employing the subspace iteration
method. The spurious modes are totally suppressed in the whole
frequency range of interest. Numerical examples of dielectric
waveguide, microstrip transmission lines with finite conductivity
are conducted and compared with previous publications with
good agreement.

I. INTRODUCTION

DURING THE PAST decade the state-of-the-art integrated
circuit technology has allowed the chip and the system

clock rates to increase dramatically. In the case of CMOS,

clock rates at the chip level have increased from 2–5 MHz
in the early 1980’s, to above 330 MHz in 1994. Silicon
emitter coupled logic (ECL) clock rates have increased from
50 MHz in 1975 to the GHz range currently. Gallium Arsenide
(GaAs) chips of 6-8 GHz clock rates have recently become
feasible, with operating clock rates in excess of 10 GHz
heterojunction bipolar transistor (HBT) cell and gate-array
of over 500 usable gates promised for the mid- 1990’s. The
advanced fabrication technology also allows the designer to
form a much higher density system. The GaAs E/D MESFET
processes can achieve 350-450 K gates per chip, the faster

GaAs MESFET technologies achieve 10-50 K gates per chip,

and the chip clock rates are as high as 2–2.5 GHz [1]. The
cross section of the metal traces of the multichip modules
(MCM’S) is typically in the dimension of 5VX 8v, which
is in the range of the skin depth of the metal for the low
frequency components of the signal. The dc resistance of such
structures of copper is typically 400 ohms per meter. The high
speed (GHz), high density VLSI digital circuits and MMIC’s
inevitably cause signal distortion due to multiple reflection,
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uniplannar and multilayer crosstalk, skin effect, dispersion,

and leaky phenomenon in the chip, packaged and unpackaged

circuit board, and system levels. Therefore, the design of the
packaging and interconnects is as important as the design of
the integrated circuits themselves. Recently, extremely lossy

dielectrics with loss tangent in the order of 105 have also
found application in electronic systems. In CMOS circuits, the
gate regions of the MOS transistors are usually doped heavily.
In the bulk CMOS IC, the metal interconnects are deposited
above these heavily doped substrates, which however results
in a high line to substrate capacitance. The nonwork power has

then to be increased to charging these capacitance proportion-

ally. The fore-knowledge of these effects are therefore needed
for successful system design and to optimize performance.

High speed interconnect effects are usually simulated by
lumped and distributed circuits models of multiconductors

with electrical equivalent parameters of the network. The
parameters, including capacitance, inductance, resistance, con-
ductance matrices are usually obtained by the quasi-static anal-
ysis in conjunction with the small perturbation method [2]-[5].
With <100 picosecond rising time and GHz bandwidth, the

quasi-static assumption is not generally held. This is because

the electrical characteristics, represented by the dispersion,
line losses, which are all frequency dependent, have to be

modeled accurately. The small perturbation method may no
longer be applicable because none of the losses, neither ohmic
nor dielectric, are small. Besides the difficulty in modeling
the lossy dielectric accurately and dynamically, describing the
behavior of the conductors with finite thickness and finite
conductivity is another obstacle in extracting these parameters.
The hybrid mode analysis has been used to extract circuit

parameters, including characteristic impedance, propagation
constant, and attenuation factor by taking into account the

dispersion effects for high speed circuits [6], [7]. In their

approaches, the lossy conductors are treated with complex

surface impedances. This approximation is able to yield quite
satisfactory results for narrow banded MMIC’s at higher

frequencies with thicker conductors, where the skin depth

is much smaller than the conductor thickness. Nonetheless,

for the thin conductor problems encountered in MCM’s, this

method is not valid for the whole frequency spectrum of

interest. In fact, the skin depths of the metal for the lower
spectrum portion may be greater than the metal thickness.
Kiang et al. proposed the volume integral equation method

(VIE) to solve the dispersive transmission line problems [8].
In theory, the VIE is rigorous. However, due to mathematical
instability in searching the roots, which correspond to the
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complex propagation constants of the fundamental and higher
modes, the results of this method is good only within a
few GHz for typical MCM geometries. The surface integral
equation method (SIE) has been successfully applied to the

problems of this category as well [9]. But the limitation

is that the dielectric structure must be layered because the

Green’s functions in the SIE are derived for layered media.

On many occasions, the substrate interface may have grooves
or notches of irregular shapes, which prevent the SIE from
direct applications.

The finite element method (FEM) is attractive because of

its systematic procedure and its flexibility to any complicated
geometries and boundary conditions [10], [1 1]. As far as
the 2 – D $ dielectric loaded waveguide structure is con-
cerned, node based FEM has successfully been used [12], [13].

These approaches, however, can not be directly applied to
transmission lines with finite thickness and finite conductivity
because of the appearance of “spurious modes.” In fact, the
conventional node based FEM can not be employed in the
field domain in which material property changes abruptly [14].
As a result, the “vector element” or edge FEM has emerged
aiming to solve the dielectric and conductor interface problems
[10], [15], [16]. With degrees of freedom associated with edges

of the mesh, the edge FEM guarantees the continuity of the

tangential field components across interfaces without imposing
any of the normal field quantities. In [15] the vector element

has been applied to the lossless waveguide structures with

great success. However, the functional employed in the paper

does not take any losses, dielectric, ohmic or radiative, into
account. Based on [15], a new approach has been proposed,
which handles dielectric loss in waveguide structures [17]. In
the approach, the vector Helmholtz equation is decomposed
into two coupled partial differential equations. Taking the
inner product of the corresponding vector components, the
functional was then constructed by subtracting the second
equation from the first ((5) in [17]). The trial function and
test function were chosen to be the same, namely, the electric
field. The functional in that paper is correct, and effective.
But the derivation of the functional seems not to be systematic,

because one can ask why subtracting the second equation from
first, instead of adding them together.

In the current paper we provide a rigorous and systematic
construction of the functional for the general 2 – D ~ structures
by using the 3-D vector form. The boundary conditions of

the first, second, and third kind are all taken into account.
Thus, the functional characterizes a wide range of the 2 – D+

waveguiding structures. The functional takes the previous two
functional of the previous two papers as its special cases.
Employing the edge element method and utilizing the new
functional, we have solved the general waveguiding problem
of conductors with finite conductivity and cross section in a
lossy dielectric media. For thin conductor cases where the
impedance condition does not apply, one can mesh the grids
into the interior of the conductors. Several transmission line

structures have been attacked and the numerical results are
presented.

The remainder of the paper is organized as follows: Section
II, III, IV present the basic theory, followed by the edge

DispersivewaveguidingStructures
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Fig. 1. Waveguiding structure

element procedure of Section V. Numerical examples are
provided in Section VI.

II. NEW FUNCTIONALFORMULATION

In this section, we present a rigorous derivation of the
required functional for waveguiding structures in an isotropic
and piecewise homogeneous environment. This derivation can
easily be generalized to anisotropic and inhomogeneous cases.

We begin with the vector wave equation

(1)

where the wavenumber k. = w-, ,uO and co are the

free space permeability and permittivity of the material, re-
spectively, and V denotes the solution domain, as depicted

in Fig. 1. Note that in (1), the solution domain of the 3-D

vector wave equation is defined in a volume region as shown
in Fig. 1, instead of just the cross section Q of the waveguide
structure as specified in [15].

The homogeneous boundary conditions are given in [11] as

where S = S1 U Sz, and ~~ is a frequency dependent parameter
as will be given in (15).

Judiciously selecting the adjoint field Et and taking the
inner product with the left hand side of (1), we have

F@) =
/[ 1

(v x it): . (v x @ - erk;(Et .i) dv
v

-i+01+02Ptx2x4“; ‘2)
Upon applying the boundary condition (2a), (2b), (2) can be

deduced as

-/ [ 1~+x~vxz d;. (3)
01+02 &

For:he exact solution of the electrical field, the functional
F(E) = O.

Since the solution domain can be arbitrarily chosen along

the wave propagation direction Z’, in which the structure is
uniform and is extended to +cm, the functional per unit length
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must be independent of the portion along the Z axis. Therefore,

the integrations over 01 and 02 ought to cancel each other.
As a result, the sufficient and necessary condition to achieve

the cancellation is to specify the adjoint field Et. The physical
meaning of such a choice is to employ the adjoint field which

propagates in the opposite direction of the original field ~.
According to [18] or [19], the relation between the two fields
can be expressed as

-E = (fit + 213Z)e-7Z

l?t = (2* – .2Ez)eyz. (4)

Hence, we arrive at

/
Fp(fi)= (vx Et)#Vx E)dt 2-k;

/
c.~+ . ~d~

/
+7, ~,(iix@)(fix@dl (5)

where the Fp is the functional per unit length and 1 = 11U 12, is

the contour of the cross section a as shown in Fig. 1. Noticing

Vxd+. vxll=vt xit.vtxdt

- (y~, + VJ3Z) . (Tit + VtEz)

12~. Ij=@. dt-Ez. Ez (6)

where Vt = 2 ~ + y $. Introducing new variables

E. = -ye.

J5t = z~

we end with

F(d) =
/[ 1

:(V, X Z“)2 - erk:$; dQ

/
-72 [(4+ Vte.)2 - c.kfe~] dfl

+ ‘ye /[ (ii x c7t)2 - ~2e~]dS.
52

(7)

Equation (7) is the desired form in obtaining the eigenvalues
and eigenvectors of the general 2 – D ~ dispersive waveguid-
ing problems consisting of conductor; of finite conductivity

and finite cross sections in a lossy environment under the

homogeneous boundary conditions. The nice property of this
functional is its physical symmetry, which is a consequence
of the fact that in a two dimensional structure the vector fields
propagate in both directions without any preference.

It is worth mentioning that if the required adjoint field is
applied to the solution domain of a cross section Q as in [15],
[17], [20], the adjoint field can only be+chosen $ccording to
(l). In other words. the selections of E, ~“, H for adjoint
are improper. To verify this statement, let us start from the
vector wave (1). Following the previous procedures, except

the domain now is on 0 instead of in V, we arrive at

F(fl) =
/[ 1

(V, X i~)~ . (Vt X it) - Erk;i: . k, dfl
Q

+
/[

* (~+~j + W)i ~(~fit + VJL)

where TC = O is assumed for simplicity. In (8), the ~t is

the propagation constant of the adjoint field it. The Euler

equations satisfying (8) are

On the other hand, the vector wave (1) can be directly

decomposed into

Vt X ~[(VtE. + yit) X 2] – G.k;E,2 = O. (10)

Comparing (10) with (9), we have

~t = –-f. (11)

For lossless cases, this condition degenerates back to

# = –j/j (12)

if T is j~. The previous discussions can be extended to the
inhomogeneous boundary conditions

The functional can be shown to be

+
/[ 1i7t.17+17.E+dl.

1,
(14)

In (14), the integral of fi x ~ = ~ over 11 as an invariant

has been removed from the functional. However, it needs

to be included in the implementation of fields computation
procedures. To emphasize, we require -yt = –y.

III. THE EXTENDED THIRD BOUNDARY CONDITION

The third boundary condition (2b), can be used on many
occasions. When the ground plane consists of imperfect con-
ductors, the impedance boundary condition (2b) is applicable.
In this case, the parameter

(15)

where er~ is the relative permittivity and a is the conductivity
of the thick imperfect conductor. The use of this formula,
however, is by no means of imperfect impedance condition
only. In fact, (15) and (2b) in conjunction with the new
functional (7) can be applied to:

1) The magnetic wall, by setting ~, = O.
2) The electrical wall, by setting T. = co.
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In addition, the boundary condition of the third kind can be
extended to an artificial boundary in the form of

;fixvx E+7efixiixi+iix @(E+n)=o (16)

where @ is a linear operator. To be more specific, let us take

a stripline case, where the structures are bounded between the
upper and lower ground planes, separated by h. In the region
far away from the strips, the fields behave mainly as TEM

waves of

where the higher order perturbation terms due to the conductor
imperfectness have been neglected.

As the first order approximation, (17) is a good enough to

derive the extended third kind boundary condition. For the

electric fields of expression (17), it can be shown that

1 ()7r—nxuxi=– — nxiixmzixixin
A p.h k

-–?WX5’.
1

& “ ql

Comparing with (16), we have 7. = a, and

@=’Y~x_l. ~y x -Q-.
P. ay

(18)

(19)

Although (18) looks not exactly the same form as (2b), the
additional terms have no contribution to the functional as far
as the linear edge element implementation is concerned. In
fact, only the tangential components, say ~~, are needed for
the boundary edges, while the normal components of the fields
have no roles there. Therefore, the extended boundary condi-
tion (16) can be directly implemented under the new functional

formulation. By applying (16) to the artificial boundaries, the

mesh region will be reduced significantly. The effectiveness

and correctness of this technique has been tested with great

success as will be seen in Section VI of numerical examples.

IV. CHARACTERISTICIMPEDANCES

Besides the complex propagation constant, which can be
evaluated using (7), the complex impedance is another useful
parameter. For a IV + 1 transmission line system, there exist
N propagation eigen modes, and the element of the power
matrix is

where * denotes complex conjugate, k, 1 indicates mode k
and mode 1 respectively. The current flowing on line i,

corresponding to the kth mode, can be obtained from the
Ohm’s law in conjunction with the kth eigenvector. namely

where ~h is the current density vector on line i of mode k,
h is the area of the cross section of line i. The characteristic
impedance matrix then is found to be [21]

zc = [~-l] *TpT~-l (22)

where T is the transpose of a matrix, P is the power matrix
and 1 is the current matrix.

V. EDGE ELEMENT PROCEDURE

The V . ~ = O condition is automatically satisfied by the
vector wave (1). To apply the functional (7), we need to impose
t~e condition Vt . I?t = O in the element construction, where

W~ is the shape function such that

For the 2-D dimensional structures, only two components of
the vector fields are independent. Since Ez has been chosen as
one independent variable, only one more independent variable
has left to select out of the two tangential components in the
domain 0.

The most useful edge elements, which have been con-

structed thus far for the 2-D structures, are the rectangular

vector element and the triangular vector element. Both algo-
rithms satisfy the divergence free condition for the transverse
field components. The shape functions for the rectangular
vector element are [11 ]

(24)

The shape functions for the vector triangle element are

ii: = (L; VL; – L; VL:)l;

n; = (L;VL: – L; VL; )l;

ii; = (L; VL: – L: VL; )l; (25)

where 1: is used to normalize ii;, and L: are the area
coordinates, which are defined as

( ), Similarwithaz =Xjyk —XkYl, bi ‘Yj —yk>% = — x~—xk

relations hold for other coefficients. It has been shown that

= ‘fo [ e; dfl (21)
Jhnez L:+ L;+ L;=l. (27)
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Letting ~, = L~, then it can easily be verified that

CY!p!y!

(a+/3+7+2)!2A”
(28)

The quadrilateral type of the vector elements is not recom-
mended since it does not satisfy the divergence free condition.

Based on the analysis above, the fields can be written in

the form of

*=]
n

(29)
‘2=1

where B: are the conventional finite element shape functions.
Finally, the functional in each element can be written as

-’2{$}’[%21{:} ’30)
The global functional can then be formed as

F=~Fe (31)
C=l

‘[::lTK” :1[::1

-~2[::lT[% %1[::1 ’32)
At the stationary point, the first variation of (32) is zero,

yielding

h :1[51-72[% 21[::1=0 ’33)
It is not an easy task to solve the eigen (33). There is

no commercial solver available for the large scale, complex,
generalized eigenvalue and eigenvector problems. The matrix
size involved in (33) can easily reach a few thousand squared.
and the number of the eigenvectors is also very huge. For
the transmission line type structures, however, only a few
eigenvalues, corresponding to the fundamental propagation
modes, are essential to us. As a result, the subspace iteration
method is extremely suitable for our applications.

The subspace iteration method is first proposed by K.
Bathie, and the detail can be found in [22]. Recently, F.
Fernandez solved a dielectric waveguide problem by using a
modified sub space iteration method [23]. The basic procedures
in solving the generalized eigenvalue problem

Ax = ~Bx (34)

LossyDielectricLoaded
Waveguide
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Fig. 2. Lossy dielectric loaded waveguide,
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Fig. 3. Dispersion curve of the lossy dielectric loaded waveguide.

are briefly summarized as the follows. Let the dimension of A

and B be N x N, and the number of eigenvalues of interest

be p << iV. Thus, the iterative steps are

(A – @)Xs+l = BXS

AS+l = [Xs+l]t(A – ~B)Xs+l

&+l = [xs+l]t~Jys+l

As+l@S+l = B5+l@5+lrS+l+ (35)

The required eigenvectors and eigenvalues are, respectively

x = X’+las’+1 (36)

and

)1’+l(i) = y+l(i) + L“ (37)

where ~s+l (z) is the ith element of the diagonal matrix 17s+l.
By adjusting the shift factor ~, the subspace iteration method

convergence quickly to the lowest eigenvalues.
Taking advantage of the sparsity of the matrix in finite

element method, we have implemented the subspace iteration
method in the edge element algorithm and successfully solved
the eigenvalue and eigenvector problems for matrices of
dimension in several thousands.
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Fig. 4. Attenuation curve of the lossy dielectric loaded waveguide.

Fig. 5. Microstrip line with finite thickness and finite conductivity

VI. NUMERICAL RESULTS

+

+
— Edge element method

+ EMAS

I
0.0 t

0.0 10.0 20.0 30.0 40.0 50.0
Frequency in GHz

Fig. 6. Attenuation constant of the lossy microstrip line

t

I~ Edge element method I

Numerical examples are provided to demonstrate the cor-

rectness and effectiveness of the new formulas, and to verify b’
that the spurious modes have been totally suppressed.

Example 1—LOSSYDielectric Loaded Waveguide: A Iossy
dielectric loaded rectangular waveguide, as shown in Fig. 2,

is presented here to verify our formulation and the numerical
codes, since the analytical solution exists for this structure. The
normalized complex propagation constant is well known to be

Assuming a = 2b = 1 and + = 4 + j100, this means

that the loss tangent equals 87°. The numerical values of the
propagation constant and attenuation factor for the first mode
are shown in Figs. 3 and 4.

Example 2—Microstrip Line with Finite Conductivip:
Fig. 5 illustrates the configuration of a lossy microstrip line of
3 ~m thick. Both the microstrip and the ground plane are lossy
with a = 4.1 * 107 for the signal line and o = 5.8 * 107 s/m
for the ground. The substrate can be lossy, however, here we
assume it to be lossless with dielectric permittivity of CT= 13.

0. 1/ I , I

0.0 10.0 20.0 30.0 40.0 50.0
Frequencyin GHz

Fig. 7. Propagation constant of the 10SSYmicrostrip line

In Fig. 6, we compare our results against a commercial
software, EMAS [24] for the attenuation curve from 1 GHz to
40 GHz. Again agreement is reasonably good. Figs. 7, 8, and

9 show the frequency dependent propagation constant, and
the complex characteristic impedance due to the conductor
loss.

In this computation, 551 rectangular edge elements are used
to get converged result, especially for the attenuation curve.
It takes a few minutes of CPU time on a DEC AXP 3000
machine for each frequency point. The mesh region includes
the interior of the microstrip line.

Example 3—Coupled StripLines: Fig. 10 depicts the ge-
ometry of four coupled striplines of finite thickness and finite
conductivity. The upper and the lower ground planes are also
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~ Edge element method I

t
40.0 I

0.0 10.0 20.0 30.0 40.0 !

Frequency in GHz
)

Fig. 8. Real component of the characteristic impedance of the 10SSYmi-
crostrip line.

-1.2

I

f

\# Edge element method I

10.O 20.0

i

I
30.0 40.0 50.0

frequency in GHz

Fig. 9. Imagimuy component of the characteristic impedance of the lossy
microstrip line.

assumed to be lossy. Similar to the treatment in Example 2,

the mesh grids pass through all the striplines. According to

multiple transmission line theory, there exist four fundamental

propagation modes, namely, the e-e, o-o, o-e and e-o modes,

The numerical results for the attenuation curve is displayed

in Fig. 11. Comparison for the attenuation constants of our

results and the VIE [8] indicates that, while agreement for the

e-e mode and the o-e mode is very good, the results of the

otier two modes demonstrate a small difference.

VII. CONCLUSION

In this paper, a new functional for the 2 – D ~ structures is

derived and applied to the edge element analysis. Ohmic loss

and dielectric loss are treated systematically and consistently

I=J+hr * I

‘“54!5T
t z~

h

T

S=w= 100W H. 600p c =1.92*

t= 25 P h= 100P ‘r ’10

Fig. 10. Configuration of four coupled strip hne structure.

H
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~ 3.0
g
f 2.5

4
1.5

1.0

0.5
.— - 1

0.0 I I
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Frequency in GHz

Fig. 11. Attenuation curves for the four coupled strip lines,

under the full wave regime. An extended boundary condition
of the third kind is proposed and employed for the opened
structures to confine the computation region with good suc-
cess. The subspace iteration method is used to handle large

scale generalized complex eigenvalue problems. Numerical
examples of waveguides and transmission lines for digital and
millimeter wave applications are presented.
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