2600

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 43, NO. 11, NOVEMBER 1995
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Abstract—A new functional is rigorously selected for the edge
element method to solve the 2 — D—;— guided wave problems. The
variational formulation is derived from the vector wave equation
without any assumption or simplifications, and therefore the
formulation is the full-wave analysis. Moderate to heavy ohmic
loss and dielectric loss are taken into account in a natural and
consistent manner. As a result, finite cross-section of arbitrary
shape and finite conductivity can be handled without imposing
the impedance boundary condition (IBC). The IBC may no longer
be held for high-speed microelectronics applications, where the
cross-section dimension may have been in the same order of
the skin depths of some frequency components. The propagation
modes are obtained by solving the large scale generalized eigen-
value and eigenvector equations employing the subspace iteration
method. The spurious modes are totally suppressed in the whole
frequency range of interest. Numerical examples of dielectric
waveguide, microstrip transmission lines with finite conductivity
are conducted and compared with previous publications with
good agreement.

1. INTRODUCTION

URING THE PAST decade the state-of-the-art integrated

circuit technology has allowed the chip and the system
clock rates to increase dramatically. In the case of CMOS,
clock rates at the chip level have increased from 2-5 MHz
in the early 1980’s, to above 330 MHz in 1994. Silicon
emitter coupled logic (ECL) clock rates have increased from
50 MHz in 1975 to the GHz range currently. Gallium Arsenide
(GaAs) chips of 6-8 GHz clock rates have recently become
feasible, with operating clock rates in excess of 10 GHz
heterojunction bipolar transistor (HBT) cell and gate-array
of over 500 usable gates promised for the mid-1990’s. The
advanced fabrication technology also allows the designer to
form a much higher density system. The GaAs E/D MESFET
processes can achieve 350-450 K gates per chip, the faster
GaAs MESFET technologies achieve 10-50 K gates per chip,
and the chip clock rates are as high as 2-2.5 GHz [1]. The
cross section of the metal traces of the multichip modules
(MCM’s) is typically in the dimension of 5ux8u, which
is in the range of the skin depth of the metal for the low
frequency components of the signal. The dc resistance of such
structures of copper is typically 400 ohms per meter. The high
speed (GHz), high density VLSI digital circuits and MMIC’s
inevitably cause signal distortion due to multiple reflection,
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uniplannar and multilayer crosstalk, skin effect, dispersion,
and leaky phenomenon in the chip, packaged and unpackaged
circuit board, and system levels. Therefore, the design of the
packaging and interconnects is as important as the design of
the integrated circuits themselves. Recently, extremely lossy
dielectrics with loss tangent in the order of 10° have also
found application in electronic systems. In CMOS circuits, the
gate regions of the MOS transistors are usually doped heavily.
In the bulk CMOS IC, the metal interconnects are deposited
above these heavily doped substrates, which however results
in a high line to substrate capacitance. The nonwork power has
then to be increased to charging these capacitance proportion-
ally. The fore-knowledge of these effects are therefore needed
for successful system design and to optimize performance.
High speed interconnect effects are usuvally simulated by
lumped and distributed circuits models of multiconductors
with electrical equivalent parameters of the network. The
parameters, including capacitance, inductance, resistance, con-
ductance matrices are usually obtained by the quasi-static anal-
ysis in conjunction with the small perturbation method [2]-[5].
With <100 picosecond rising time and GHz bandwidth, the
quasi-static assumption is not generally held. This is because
the electrical characteristics, represented by the dispersion,
line losses, which are all frequency dependent, have to be
modeled accurately. The small perturbation method may no
longer be applicable because none of the losses, neither ohmic
nor dielectric, are small. Besides the difficulty in modeling
the lossy dielectric accurately and dynamically, describing the
behavior of the conductors with finite thickness and finite
conductivity is another obstacle in extracting these parameters.
The hybrid mode analysis has been used to extract circuit
parameters, including characteristic impedance, propagation
constant, and attenuation factor by taking into account the
dispersion effects for high speed circuits [6], [7]. In their
approaches, the lossy conductors are treated with complex
surface impedances. This approximation is able to yield quite
satisfactory results for narrow banded MMIC’s at higher
frequencies with thicker conductors, where the skin depth
is much smaller than the conductor thickness. Nonetheless,
for the thin conductor problems encountered in MCM’s, this
method is not valid for the whole frequency spectrum of
interest. In fact, the skin depths of the metal for the lower
spectrum portion may be greater than the metal thickness.
Kiang et al. proposed the volume integral equation method
(VIE) to solve the dispersive transmission line problems [8].
In theory, the VIE is rigorous. However, due to mathematical
instability in searching the roots, which correspond to the
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complex propagation constants of the fundamental and higher
modes, the results of this method is good only within a
few GHz for typical MCM geometries. The surface integral
equation method (SIE) has been successfully applied to the
problems of this category as well [9]. But the limitation
is that the dielectric structure must be layered because the
Green’s functions in the SIE are derived for layered media.
On many occasions, the substrate interface may have grooves
or notches of irregular shapes, which prevent the SIE from
direct applications.

The finite element method (FEM) is attractive because of
its systematic procedure and its flexibility to any complicated
geometries and boundary conditions [10], [11]. As far as
the 2 — D% dielectric loaded waveguide structure is con-
cerned, node based FEM has successfully been used [12], [13].
These approaches, however, can not be directly applied to
transmission lines with finite thickness and finite conductivity
because of the appearance of “spurious modes.” In fact, the
conventional node based FEM can not be employed in the
field domain in which material property changes abruptly [14].
As a result, the “vector element” or edge FEM has emerged
aiming to solve the dielectric and conductor interface problems
[10], [15], [16]. With degrees of freedom associated with edges
of the mesh, the edge FEM guarantees the continuity of the
tangential field components across interfaces without imposing
any of the normal field quantities. In [15] the vector element
has been applied to the lossless waveguide structures with
great success. However, the functional employed in the paper
does not take any losses, dielectric, ohmic or radiative, into
account. Based on [15], a new approach has been proposed,
which handles dielectric loss in waveguide structures [17]. In
the approach, the vector Helmholtz equation is decomposed
into two coupled partial differential equations. Taking the
inner product of the corresponding vector components, the
functional was then constructed by subtracting the second
equation from the first ((5) in [17]). The trial function and
test function were chosen to be the same, namely, the electric
field. The functional in that paper is correct, and effective.
But the derivation of the functional seems not to be systematic,
because one can ask why subtracting the second equation from
first, instead of adding them together.

In the current paper we provide a rigorous and systematic
construction of the functional for the general 2— D—% structures
by using the 3-D vector form. The boundary conditions of
the first, second, and third kind are all taken into account.
Thus, the functional characterizes a wide range of the 2 — D%
waveguiding structures. The functional takes the previous two
functionals of the previous two papers as its special cases.
Employing the edge element method and utilizing the new
functional, we have solved the general waveguiding problem
of conductors with finite conductivity and cross section in a
lossy dielectric media. For thin conductor cases where the
impedance condition does not apply, one can mesh the grids
into the. interior of the conductors. Several transmission line
structures have been attacked and the numerical results are
presented.

The remainder of the paper is organized as follows: Section
II, III, IV present the basic theory, followed by the edge
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Fig. 1. Waveguiding structure.

element procedure of Section V. Numerical examples are
provided in Section VI.

II. NEw FUNCTIONAL FORMULATION

In this section, we present a rigorous derivation of the
required functional for waveguiding structures in an isotropic
and piecewise homogeneous environment. This derivation can
easily be generalized to anisotropic and inhomogeneous cases.

We begin with the vector wave equation

VX%VXE—G,&%E:O onV (1)

where the wavenumber ky = w./lo€o, o and ¢p are the
free space permeability and permittivity of the material, re-
spectively, and V' denotes the solution domain, as depicted

-in Fig. 1. Note that in (1), the solution domain of the 3-D

vector wave equation is defined in a volume region as shown
in Fig. 1, instead of just the cross section {2 of the waveguide
structure as specified in [15].

The homogeneous boundary conditions are given in [11] as

AxE=0 _ } onS;  (2a)
M—iﬁxVxE—l—%ﬁxﬁszo on Sy  (2b)

where S = S1US>, and «, is a frequency dependent parameter
as will be given in (15). .

Judiciously selecting the adjoint field ET and taking the
inner product with the left hand side of (1), we have

F(F) = /V [(v « B~

Hor

_]f [ET NELR E] . dg. 2)
S+01402 Hor .

Upon applying the boundary condition (2a), (2b), (2) can be
deduced as
1

F(E) :/V [(v X ET)MT

+ye/ [A x EY] - [a x E]ds
52

—/ [ETx—l-VxE']-dE'.

01402 Mo

For the exact solution of the electrical field, the functional

F(E) = 0. :
Since the solution domain can be arbitrarily chosen along

the wave propagation direction Z, in which the structure is
uniform and is extended to fo0, the functional per unit length

(V x E) — ¢, k2(E! .E)} dv

(V x E) — e, k3 (E* -E)]dv

3
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must be independent of the portion along the Z axis. Therefore,
the integrations over O1 and O2 ought to cancel each other.
As a result, the sufficient and necessary condition to achieve
the cancellation is to specify the adjoint field E'. The physical
meaning of such a choice is to employ the adjoint field which
propagates in the opposite direction of the original field E.
According to [18] or [19], the relation between the two fields
can be expressed as

EY = (B, — 3E,)e". 4)
Hence, we arrive at

FP(E):/(VxET)i-(vxE)dQ—k(%/erﬁf.EdQ
Hor

+fye/(ﬁ><]§T)-(ﬁ><

133

E)di (5)
where the F), is the functional per unit length and [ = [ Ul5, is
the contour of the cross section {2 as shown in Fig. 1. Noticing
VXET-VXE:Vtht~Vtht
— (YEy + V\E.) - (YE; + V:E.)

E'V.E=E, E,—E.-E, (6)
where V; = 5058— + 3‘?— Introducing new variables
E. = ~e,
E =¢

we end with
1
F(&) = / [_(vt X &)? — e k22
P

— 72/ [(& + Vie,)? — erkgez] dQ

+’ye/s2 [(7 x &

Equation (7) is the desired form in obtaining the eigenvalues
and eigenvectors of the general 2 — D% dispersive waveguid-
ing problems consisting of conductors of finite conductivity
and finite cross sections in a lossy environment under the
homogeneous boundary conditions. The nice property of this
functional is its physical symmetry, which is a consequence
of the fact that in a two dimensional structure the vector fields
propagate in both directions without any preference.

It is worth mentioning that if the required adjoint field is
applied to the solution domain of a cross section 2 as in [15],
[17], [20], the adjoint field can only be chosen according to
(1). In other words, the selections of E, E*, H for adjoint
are improper. To verify this statement, let us start from the
vector wave (1). Following the previous procedures, except
the domain now is on € instead of in V, we arrive at

dQ

+)? —fye]dS @)

. Lo 1 o gy o
F(E) = /Q [(vt X EJ)M— (Vi X Ey) — e, k2E] - E;|d
o 1 .
+/ {(’YTEZ + VtEi)M— - (vE: + V. E.)
Q r

- erkSEZEZ] dQ ®)
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where . = 0 is assumed for simplicity. In (8) the v' is
the propagation constant of the adjoint field Et. The Euler
equations satisfying (8) are

1 — T . N
Vi x —V, x By + Z—(VtEZ Y4By — e k2B, =0

1 .
Vi X M_[(Vth +yEy) x 5] — ek B2 = 0. (9)

On the other hand, the vector wave (1) can be directly
decomposed into

1 _ N .
Vex o -Vix Fi— Ml(vth +yB,) — e, k2E, =0
Vi x Mi[(vth B X ] — e k2ELE = 0. (10)

Comparing (10) with (9), we have

v = (1)
For lossless cases, this condition degenerates back to
V' =—jp (12)

if «v is 8. The previous discussions can be extended to the
inhomogeneous boundary conditions
AxE=P on S (13)
M%ﬁxVxE—l—veﬁxﬂxE:U on Sy
The functional can be shown to be
. | . VR,
I(E) = / {(v x EN— - (Vx E) — ¢,k2E" . E|d
Q 2

+7€/[ﬁxﬁf]‘[ﬁxﬁ]dl

-lg

+/ Ut E+ 0 B|a
I2

14

In (14), the integral of 7 X E = P over [1 as an invariant
has been removed from the functional. However, it needs
to be included in the implementation of fields computation
procedures. To emphasize, we require 77 = —7.

III. THE EXTENDED THIRD BOUNDARY CONDITION

The third boundary condition (2b), can be used on many
occasions. When the ground plane consists of imperfect con-
ductors. the impedance boundary condition (2b) is applicable.
In this case, the parameter

;O
€re _jweo

Ve = Jko 15)

where ¢, . is the relative permittivity and o is the conductivity
of the thick imperfect conductor. The use of this formula,
however, is by no means of imperfect impedance condition
only. In fact, (15) and (2b) in conjunction with the new
functional (7) can be applied to:

1) The magnetic wall, by setting v, = 0.

2) The electrical wall, by setting v, = oo.
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In addition, the boundary condition of the third kind can be
extended to an artificial boundary in the form of

1 , . .
M—ﬁxVxE+’yeﬁxﬁxE+ﬁxgs(En):0
r

(16)

where ¢ is a linear operator. To be more specific, let us take
a stripline case, where the structures are bounded between the
upper and lower ground planes, separated by h. In the region
far away from the strips, the fields behave mainly as TEM
waves of

{sin<%>e<%w>e~w } o

cos(5E)e~(Fadeg=v=

where the higher order perturbation terms due to the conductor
imperfectness have been neglected.

As the first order approximation, (17) is a good enough to
derive the extended third kind boundary condition. For the
electric fields of expression (17), it can be shown that

1 o . .
—fszxE:—( il )ﬁxﬂxE—klA X Zx By
Hr /’Lrh Hr
1 OF.
— A XX —. (18)
Hor Ay
Comparing with (16), we have ~, = ke and
1 15}
6= Lix——gx — (19)
My Hr 9

Although (18) looks not exactly the same form as (2b), the
additional terms have no contribution to the functional as far
as the linear edge element implementation is concerned. In
fact, only the tangential components, say E,. are needed for
the boundary edges, while the normal components of the fields
have no roles there. Therefore, the extended boundary condi-
tion (16) can be directly implemented under the new functional
formulation. By applying (16) to the artificial boundaries, the
mesh region will be reduced significantly. The effectiveness
and correctness of this technique has been tested with great
success as will be seen in Section VI of numerical examples.

IV. CHARACTERISTIC IMPEDANCES

Besides the complex propagation constant, which can be
evaluated using (7), the complex impedance is another useful
parameter. For a N + 1 transmission line system, there exist
N propagation eigen modes, and the element of the power
matrix is

phit = I / [k - @y + & - Vi(e)]dn o)

Wiy
where * denotes complex conjugate, k,! indicates mode k
and mode [ respectively. The current flowing on line ¢,
corresponding to the kth mode, can be obtained from the
Ohm’s law in conjunction with the kth eigenvector, namely

IF = / 7* - df
line i

:fyka/ ekd (1)
lines
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where f"' is the current density vector on line ¢ of mode £,
£ is the area of the cross section of line i. The characteristic
impedance matrix then is found to be [21]

Zo=[I"*PIT 1 (22)
where T is the transpose of a matrix, P is the power matrix
and I is the current matrix.

V. EDGE ELEMENT PROCEDURE

The V - D = 0 condition is automatically satisfied by the
vector wave (1). To apply the functional (7). we need to impose
tI_lp condition V; - Wt = 0 in the element construction, where
W, is the shape function such that

M
By =) BEuW,. (23)
1=1

For the 2-D dimensional structures, only two components of
the vector fields are independent. Since I, has been chosen as
one independent variable, only one more independent variable
has left to select out of the two tangential components in the
domain Q.

The most useful edge elements, which have been con-
structed thus far for the 2-D structures, are the rectangular
vector element and the triangular vector element. Both algo-
rithms satisfy the divergence free condition for the transverse
field components. The shape functions for the rectangular
vector element are [11]

Tre __ 1<ye+l§ y)a’c’

tl — 7e o5
s\ 2

o 1 e

e _ — [ _e Y =

Wi l;i( yc+2+y>w

L1, 3}
Wt?,:lz<$c+§—$>y

S 1 P ) .
Wt4=l_e —$C+E+w 7. (24)
The shape functions for the vector triangle element are
n§ = (L§VL§ — LEVLIS
ng = (L§VLS — LyVLS)is
ng = (L§VLS — LSVLS)I§ (25)

where [f is used to normalize 7,
coordinates, which are defined as

and L are the area

L 1 [ b, ¢ 1
L; = ﬁ a]’ b] CJ X (26)
Lz ar bk Cr Y

with a, = z;yx —ZrY,, bi = yj — Yk, ¢ = —(x; —xx). Similar

relations hold for other coefficients. It has been shown that

Li+ IS+ L5 =1 @7
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Letting €, = L;, then it can easily be verified that
I@p) = [ €€ dody
A

1 1-¢.
P /0 cede, /0 €0(1— & — &, )de;

alBly!

= ——""1 __9A. 28
(oz~|—ﬂ-}—’y—l—2)!2A (28)

The quadrilateral type of the vector elements is not recom-
mended since it does not satisfy the divergence free condition.

Based on the analysis above, the fields can be written in
the form of

n
—e Tre e
€ = Z I/I/z €1,
=1
n
et =Y Btes, (29)
=1

where B are the conventional finite element shape functions.
Finally, the functional in each element can be written as

Fe = {ef}T[Af){el}

T
_2le | Ba B el
iyl ENE e
The global functional can then be formed as
Ne
F=) F° 31)
e=1
e ’ Ay 0] e
e, 0 O0]]le,
e, 1" [B B e
_ 2l tt tz t
K |:ez:| |:th Bzz:l |:€z:| (32)

At the stationary point, the first variation of (32) is zero,

yielding
Ay O e 2| Bu B ||ed]| _
[0 OHeZ]‘” Be Bo|le.|”% ©9

It is not an easy task to solve the eigen (33). There is
no commercial solver available for the large scale, complex,
generalized eigenvalue and eigenvector problems. The matrix
size involved in (33) can easily reach a few thousand squared.
and the number of the eigenvectors is also very huge. For
the transmission line type structures, however, only a few
eigenvalues, corresponding to the fundamental propagation
modes, are essential to us. As a result, the subspace iteration
method is extremely suitable for our applications.

The subspace iteration method is first proposed by K.
Bathie, and the detail can be found in [22]. Recently, F.
Fernandez solved a dielectric waveguide problem by using a
modified subspace iteration method [23]. The basic procedures
in solving the generalized eigenvalue problem

Az = \Bz 34
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Lossy Dielectric Loaded
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Fig. 2. Lossy dielectric loaded waveguide.
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k0 *a
Fig. 3. Dispersion curve of the lossy dielectric loaded waveguide.

are briefly summarized as the follows. Let the dimension of A
and B be N x N, and the number of eigenvalues of interest
be p <« N. Thus, the iterative steps are

(A—uB)X*t' = BX*®
As-l—l — [Xs-l—l]t(A _ /I,B)Xs+1
Bs+1 — [Xs+1]tB4¥S+1

As—i-l(I.S-i-l — Bs+1q)s+lrs+l. (35)

The required eigenvectors and eigenvalues are, respectively

X = xeHipstt (36)

and

M@ =) + (37)
where 7511 (7) is the ith element of the diagonal matrix I'*2.
By adjusting the shift factor 4, the subspace iteration method
convergence quickly to the lowest eigenvalues.

Taking advantage of the sparsity of the matrix in finite
element method, we have implemented the subspace iteration
method in the edge element algorithm and successfully solved
the eigenvalue and eigenvector problems for matrices of
dimension in several thousands.
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Fig. 4. Attenuation curve of the lossy dielectric loaded waveguide.
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w

Fig. 5. Microstrip line with finite thickness and finite conductivity.

VI. NUMERICAL RESULTS

Numerical examples are provided to demonstrate the cor-
rectness and effectiveness of the new formulas, and to verify
that the spurious modes have been totally suppressed.

Example 1—Lossy Dielectric Loaded Waveguide: A lossy
dielectric loaded rectangular waveguide, as shown in Fig. 2,
is presented here to verify our formulation and the numerical
codes, since the analytical solution exists for this structure. The
normalized complex propagation constant is well known to be

mm nmw

\/; B (kO*a)2 B (kO*b>2'

Assuming ¢ = 2b = 1 and ¢, = 4 + 7100, this means
that the loss tangent equals 87°. The numerical values of the
propagation constant and attenuation factor for the first mode
are shown in Figs. 3 and 4.

Example 2—Microstrip Line with Finite Conductivity:
Fig. 5 illustrates the configuration of a lossy microstrip line of
3 pm thick. Both the microstrip and the ground plane are lossy
with ¢ = 4.1 % 107 for the signal line and o = 5.8 % 107 s/m
for the ground. The substrate can be lossy, however, here we
assume it to be lossless with dielectric permittivity of e, = 13.

Attenuation in dB/m
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80.0 " " T - . : .
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40.0 - 4
Edge eclement method
+ EMAS

20.0 | 8

0.0 i 1 ] i i

0.0 10.0 20.0 30.0 40.0 50.0
Frequency in GHz

Fig. 6. Attenuation constant of the lossy microstrip line.
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Frequency in GHz

Fig. 7. Propagation constant of the lossy microstrip line.

In Fig. 6, we compare our results against a commercial
software, EMAS [24] for the attenuation curve from 1 GHz to
40 GHz. Again agreement is reasonably good. Figs. 7, 8, and
9 show the frequency dependent propagation constant, and
the complex characteristic impedance due to the conductor
loss.

In this computation, 551 rectangular edge elements are used
to get converged result, especially for the attenuation curve.
It takes a few minutes of CPU time on a DEC AXP 3000
machine for each frequency point. The mesh region includes
the interior of the microstrip line.

Example 3—Coupled Striplines: Fig. 10 depicts the ge-
ometry of four coupled striplines of finite thickness and finite
conductivity. The upper and the lower ground planes are also
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Characteristic impedance in Ohm
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Fig. 8. Real component of the characteristic impedance of the lossy mi-
crostrip line.
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[A—A Edge element method | -
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Fig. 9. Imaginary component of the characteristic impedance of the lossy

microstrip line.

assumed to be lossy. Similar to the treatment in Example 2,
the mesh grids pass through all the striplines. According to
multiple transmission line theory, there exist four fundamental
propagation modes, namely, the e-e, 0-0, 0-¢ and e-0 modes.

The numerical results for the attenuation curve is displayed
in Fig. 11. Comparison for the attenuation constants of our
results and the VIE [8] indicates that, while agreement for the
e-¢ mode and the o-e mode is very good, the results of the
other two modes demonstrate a small difference.

VII. CONCLUSION

In this paper, a new functional for the 2 — D% structures is
derived and applied to the edge element analysis. Ohmic loss
and dielectric loss are treated systematically and consistently
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Fig. 10. Configuration of four coupled strip line structure.
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Fig. 11. Attenuation curves for the four coupled strip lines.

under the full wave regime. An extended boundary condition
of the third kind is proposed and employed for the opened
structures to confine the computation region with good suc-
cess. The subspace iteration method is used to handle large
scale generalized complex eigenvalue problems. Numerical
examples of waveguides and transmission lines for digital and
millimeter wave applications are presented.
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